
Carbon & Organic Chemistry

Grade 10

Carbon

Carbon Atom

Carbon is able to form 4 covalent bonds (4 valence electrons) with other carbon or other elements.

Organic Compounds

Compounds - any covalently bonded compound containing carbon (except ______, ____ and _____) _____ - Organic compounds that contain only carbon & hydrogen _____ - contain only single covalent bonds ___ - contain one or more carbon - carbon double bond ____ - contain one or more carbon-carbon triple bond

Saturated & Unsaturated Hydron Houndation

•	Saturated h	<u>ydrocarbons</u> -	- contain only _.	carbon-carbon	bonds
	()	-		

<u>Unsaturated hydrocarbons</u> – contain double carbon-carbon bonds
 (______) or triple carbon-carbon (______) bonds

Formulas

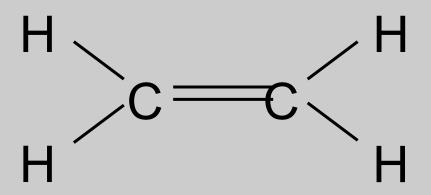
- Alkanes = $C_n H_{2n+2}$
- Alkenes = $C_n H_{2n}$
- Alkynes = $C_n H_{2n-2}$

Functional Groups

Class	Functional group
Alcohol	R – OH
Ether	R - O - R'
Aldehyde	0 R – C – H
Ketone	0 R – C – R'
Carboxylic acid	0 - C – OH
Ester	0 R - C - 0 - R'
Amine	R' R – N – R"

Alkanes

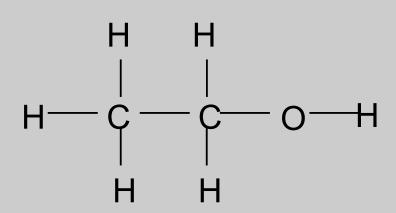
- Only carbon and hydrogen
- All single bonds


Q: What should you call **cyclic** hydrocarbons made up of just single bonds?

A: Cycloalkanes

Alkenes

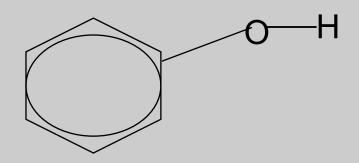
- Only carbon and hydrogen
- A carbon to carbon double bond


Q: What should you call a molecule with two C=Cs?

A: A diene

Alcohols

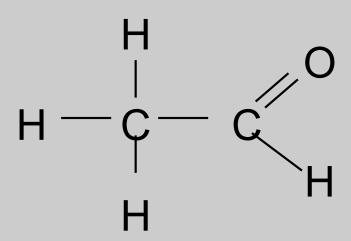
- Only one oxygen
- Has an O-H group
- Can classify as 1º/2º/3º according to position of O-H group on carbon skeleton


Q: Why are short-chain alcohols so soluble in water?

A: They can form hydrogen bonds with H₂O molecules

Phenols

- Only one oxygen
- Has an O-H group
- The O-H group is directly attached to a benzene ring


Q: The C_6H_5 - group has a special name. What is it?

A: Phenyl

Aldehydes

- Only one oxygen
- Has a C=O group
- C=O group is at the end of carbon chain, so is next door to a hydrogen atom

Q: Aldehydes can be easily oxidised to form ...?

A: Carboxylic acids

Ketones

- Only one oxygen
- Has a C=O group
- C=O group is **not** at the end of carbon chain, so is next door to 2
 carbons

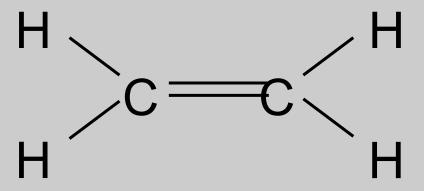
Q: Ketones cannot easily be oxidised. Why not?

A: No hydrogen atom attached to the C=O group.

"What family...?" quiz

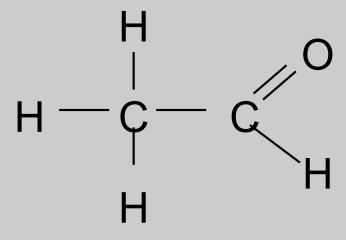
Family names:

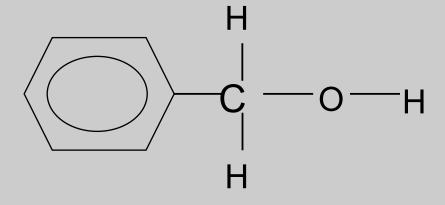
- cycloalkane
- alkene
- primary (1º) alcohol
- secondary (2º) alcohol
- tertiary (3°) alcohol
- phenol


- aldehyde
- ketone
- carboxylic acid
- ester
- ether

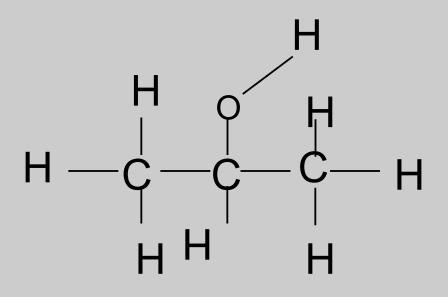
... are you ready?

5 ... 4 ... 3 ... 2 ... 1


What family does it belong to? (1)


What family does it belong to? (2)

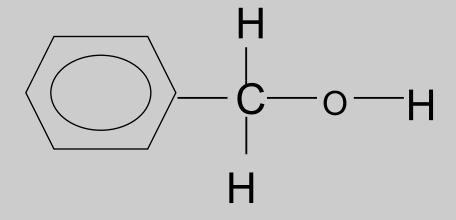
What family does it belong to? (3)



What family does it belong to? (4)

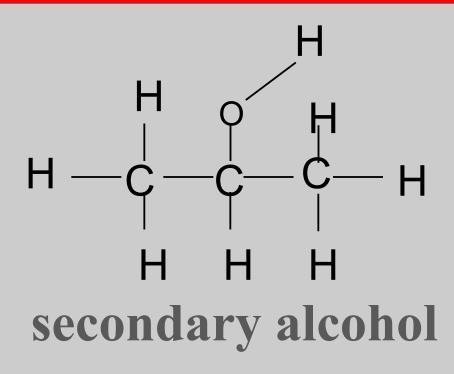
What family does it belong to? (5)

Answers: (1)


alkene

Answers: (2)

Answers: (3)


primary alcohol

Answers: (4)

Answers: (5)

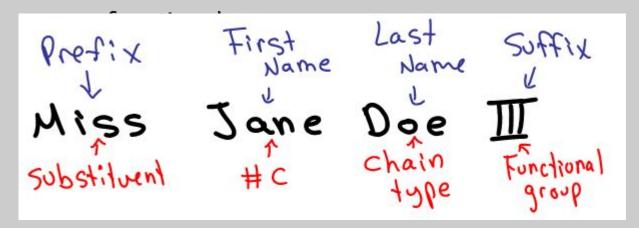
Naming an Organic Compound- IUPAC

If I told you that I met a woman with a 4-part name and asked YOU to put the parts in order, I bet you'd get it on the first attempt.

Try it

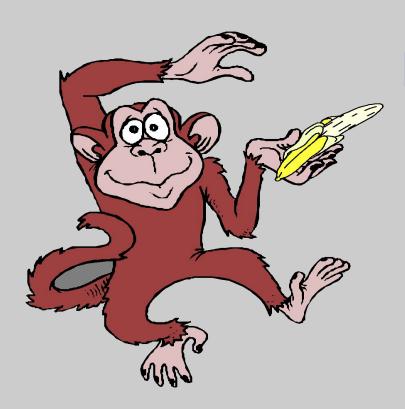
- Jane
- Jr
- Doe
- Miss

Does your attempt look like this: Miss Jane Doe Jr?


Miss Jane Doe Jr breaks down as follows:

- Prefix = Miss
- First Name = Jane
- Last Name = Doe
- Suffix = Jr

Organic Compounds Follow a Similar Naming Pattern



- Prefix = substituent
- First Name = carbon chain number
- Last Name = type of chain
- Suffix = highest priority

Mnemonic for First Four Prefixes

First four prefixes

• <u>M</u>eth- <u>M</u>onkeys

• <u>E</u>th- <u>E</u>at

• Prop- Peeled

• <u>B</u>ut- <u>B</u>ananas

Nomenclature

- Must memorize prefixes
- To name, look at the formula for the hydrocarbon
- Determine if it is an alkane, alkene, or alkyne
- Use the prefix for the number of carbons
- Add ending (ane, ene, yne)

Prefix	# of carbon atoms
Meth-	1
Eth-	2
Prop-	3
But-	4
Pent-	5
Hex-	6
Hept-	7
Oct-	8
Non-	9
Dec-	10

Other Prefixes

Decade

Decimal

Decathalon

- Pent-
- Oct-
 - Dec-
 - Hex-, Hept-, Non-

Self study link for IUPAC

https://www2.southeastern.edu/Academics/Faculty/wparkinson/help/organic_chemistry/test.html

https://orgchem101.com/nom/en/

After you refer this pdf....there are some practice worksheet

