

Chemical Reactions & Equations

Try to find this word...

It is a word related to the lesson

Synthesis: A + B -> AB

Type 1: Synthesis (Composition)

 In a synthesis reaction (also known as a composition reaction), two substances combine to form a larger substance.

Analogy: boy A walks into the dance, sees girl B and ask her to dance. They then form couple AB.

Type 2: Decomposition

In a decomposition reaction, a larger substance breaks apart and forms two or more simpler substances.

Dancers Analogy: boy A steps on girl B's toe. She gets upset and walks away.

Type 3: Single Replacement

 In a single replacement reaction, a more active element replaces a less active element in a compound.

• Analogy...

Type 4: Double Replacement

 In a double replacement reaction, two metal ions (cations -in aqueous compounds) switch places.

▶ + ��� → �� + ��

Analogy of dancers: Two couples are dancing . The two girls look over and state they wish to switch partners.

Thinking Time

Chemical Equations Practice when Online

Balancing Chemical Equations

https://phet.colorado.edu/sims/html/balan cing-chemical-equations/latest/balancingchemical-equations_en.html

Periodic Table

https://www.rsc.org/periodic-table

Some sites to explore...When online

https://interactives.ck12.org/simulations/chemistry/balancing-chemical-equations/app/index.html?screen=rwes&l ang=en&referrer=ck12Launcher&backUrl=https://interactives.ck12.org/simulations/chemistry.html

Some Important Questions

- a. To prevent rusting, a layer of <u>zinc</u> metal is applied on iron sheets.
- The conversion of ferrous sulphate to ferric sulphate is **<u>oxidation</u>** reaction.
- When electric current is passed through acidulated water of <u>electrolysis</u> water takes place.
- Addition of an aqueous solution of $ZnSO_4$ to an aqueous solution of $BaCl_2$ is an example of <u>double displacement</u> reaction.

Observe the following picture and write down the chemical reaction

Different regions on the surface of iron become anode and cathode.

(1) Fe is oxidised to Fe^{2+} in the anode region,

 $Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-1}$

 $(2)O_2$ is reduced to form water in the cathode region.

 $O_{2(g)}$ +4 $H^{+}_{(aq)}$ +4 e^{-} \rightarrow 2 $H_{2}O_{(l)}$

When Fe^{2+} ions migrate from the anode region they react with water and further get oxidised to form Fe^{3+} ions.

A reddish coloured hydrated oxide is formed from Fe^{3+} ions. It is called rust. It collect on the surface.

 $2Fe^{3+}_{(aq)} + 4H_2O_{(l)} \rightarrow Fe_2O.H2O_{(s)} + 6H^{+}_{(aq)}...$

Some important questions

Identify from the following reaction the reactants that undergo oxidation and reduction.

a. Fe + S \rightarrow FeS

Answer

Fe + S \rightarrow FeS

In a reaction, Fe is changing to FeS. That means, iron loses electrons to form FeS. Loss of electron from a substance is called oxidation, so iron undergoes oxidation.

b. $2Ag_{2}O \rightarrow 4Ag + O_{2} \uparrow$

Answer

 $2Ag_20 \rightarrow 4Ag + 0_2 \uparrow$

In a reaction, silver oxide is changing to silver. That is, oxygen is being removed from silver oxide. Removal of oxygen from substance is called reduction, so silver oxide undergoes reduction.

Some important questions

c. 2Mg + $0_2 \rightarrow 2MgO$

Answer

 $2Mg + O_2 \rightarrow 2MgO$

In a reaction, magnesium is changing to magnesium oxide. That means, oxygen is being added to magnesium. Addition of oxygen to a substance is called oxidation, so magnesium undergoes oxidation.

a.
$$H_2S_2O_{7(l)} + H_2O_{(l)} \rightarrow H_2SO_{4(l)}$$

Answer

 $\mathsf{H}_2\mathsf{S}_2\mathsf{O}_{7(\mathsf{l})} + \mathsf{H}_2\mathsf{O}_{(\mathsf{l})} \rightarrow \mathsf{H}_2\mathsf{SO}_{4(\mathsf{l})}$

Step1. Count the number of each atom in reactant side:

H= 4 S=2 O=8

Step2. Count the number of each atom in product side:

H= 2 S=1 O=4

Step3. Then balance the number of each atom in an equation by multiplying reactant and product side with numeral value:

If we multiply product side by 2, then number of atoms in product and reactant side gets balance.

 $H_2S_2O_{-1} + H_2O(l) \rightarrow 2H_2SO_{-1}$

 $SO_{2(g)} + H_2S_{(aq)} \rightarrow S_{(s)} + H_2O_{(l)}$

Step1. Count the number of each atom in reactant side:

H= 2

S=2

0=2

Step2. Count the number of each atom in product side:

H= 2

S=1

0=2

Step3. Then balance the number of each atom in an equation by multiplying reactant and product side with numeral value:

If we multiply H_2S by 2 in the reactant side and S by 3 and H_2O by 2 in the product side, then number of atoms in product and reactant side gets balance.

 $SO_{2(g)} + 2H_2S_{(aq)} \rightarrow 3S_{(s)} + 2H_2O_{(l)}$

 $NaOH_{(aq)} + H_2SO_{4(aq)} \rightarrow Na_2SO_{4(aq)} + H_2O_{(l)}$ **Step1**. Count the number of each atom in reactant side: Na= 1 H=3 O=5 S=1 **Step2**. Count the number of each atom in product side: Na= 2 H=2 O=5 S=1

Step3.Then balance the number of each atom in an equation by multiplying reactant and product side with numeral value:

If we multiply NaOH by 2 in the reactant side and H_2O by 2 in the product side, then number of atoms in product and reactant side gets balance.

 $2NaOH_{(aq)} + H_2SO_{4(aq)} \rightarrow Na_2SO_{4(aq)} + 2H_2O_{(l)}$

 $Ag_{(s)} + HCl_{(aq)} \rightarrow AgCl + H_2 \uparrow$ **Step1**. Count the number of each atom in reactant side: H= 1 Ag=1 Cl=1 **Step2**. Count the number of each atom in product side: H= 2 Ag=1 Cl=1 **Step3**. Then balance the number of each atom in an equation by multiplying

reactant and product side with numeral value:

If we multiply Ag by 2 and HCl by 2 in the reactant side and AgCl by 2 in the product side, then number of atoms in product and reactant side gets balance.

 $2Ag_{(s)} + 2HCl_{(aq)} \rightarrow 2AgCl + H_2 \uparrow$