

Quadratic Equations

Grade 10 : Topic : 2 , Mathematics I

Topics : Quadratic equation

- 1. Introduction
- 2. Methods of solving quadratic equation
- 3. Standard form of a quadratic equation
- 4. Solutions of quadratic equations by factorisation
- 5. Nature of roots of quadratic equation
- 6. Relation between roots and coefficients
- 7. Applications of quadratic equations

Standard form of a quadratic equation **Control Kotak**

- The name Quadratic comes from "quad" meaning square, because the variable gets squared (like x²)
- It is also called an "Equation of Degree 2" (because of the "²" on the x) -

The Standard Form of a Quadratic Equation looks like this: Quadratic Equation:

 $ax^{2} + bx + c = 0$

a, b and c are known values. a can't be 0.

$ax^2 + bx + c = 0$

A General Quadratic Equation

Identify quadratic equations

Equation	ls it Quadratic?	Explanation
$3x^3 - 4x + 5$	No	The first term is raised to the 3 rd power. It must be raised to the 2 nd power in order to be quadratic.
$5x^2 - 4x + 2$	Yes	This equation is in the correct form: ax ² + bx + c
7x ² = 49	Yes	This equation can be rewritten as: $7x^2 - 49$. In this equation, b is 0. B or c can be 0; however, a cannot be 0.
2x ² = 8x -3	Yes	This equation can be rewritten as $2x^2 - 8x + 3$ which would then be in the correct form of: $ax^2 + bx + c$.

Are these quadratic equations?

• $X^2 + 5x - 14$ • 4y² - 7y - 11 • 2y² - 12

In your notebook write down if they are quadratic .

Also mention the reason

How to find a, b and c?

		-	
A	В	e	Quadratic Equation
1	-3	2	$x^{2} + -3x + 2 = 0$
1	5	6	$x^{2} + 5x + 6 = 0$
3	-6	3	$3x^2 + -6x + 3 = 0$
2	-4	7	$2x^2 + -4x + 7 = 0$
-3	-24	-48	$-3x^2 + -24x + -48 = 0$
1	2	3	$x^{2} + 2x + 3 = 0$
1	2	0	$x^{2} + 2x + 0 = 0$

Ways to solve a quadratic equations

Solutions of a quadratic equation by factorisation

$$3X^2 - X - 10 = 0$$

$$\therefore 3X^2 - 6X + 5X - 10 = 0$$

$$\therefore 3X(X-2) + 5(X-2) = 0$$

$$\therefore (3x+5)(x-2)=0$$

$$(3X + 5) = 0 \text{ or } (X - 2) = 0$$

 $\therefore -\frac{5}{3}$, and 2 are the roots of the given quadratic equation.

Solve these equations
$x^2 - 15x + 54 = 0$
$x^2 + x - 20 = 0$
2y ² + 27 y + 13 = 0

Ways to solve a quadratic equations

Solutions of a quadratic equation by completing the square

 $X^2 + 8X - 48 = 0$

$$\therefore X^2 + 8X + 16 - 16 - 48 = 0$$

$$\therefore (X + 4)^2 - 64 = 0$$

$$(X+4)^2 = 64$$

$$\therefore X + 4 = 8 \text{ or } X + 4 = -8$$

$$\therefore X = 4 \text{ or } X = -12$$

Solve these equations

$$9y^2 - 12y + 2 = 0$$

$$2y^2 + 9y + 10 = 0$$

$$5x^2 = 4x + 7$$

Ways to solve a quadratic equations

 $x^{2} + 10 x + 2 = 0$ comparing with $ax^{2} + bx + c = 0$ we get a = 1, b = 10, c = 2, :. $b^2 - 4 ac = (10)^2 - 4 \times 1 \times 2$ = 100 - 8= 92 $X = \frac{-b \pm \sqrt{b^2 - 4ac}}{c}$ $=\frac{-10\pm\sqrt{92}}{2\times1}$ $X = \frac{-10 \pm \sqrt{4 \times 23}}{2}$ $=\frac{-10\pm 2\sqrt{23}}{2}$ $=\frac{2(-5\pm\sqrt{23})}{2}$ $\therefore x = -5 \pm \sqrt{23}$ $\therefore x = -5 + \sqrt{23}$ or $x = -5 - \sqrt{23}$

. the roots of the given quadratic equation are $-5+\sqrt{23}$ and $-5-\sqrt{23}$.

Solutions of a quadratic equation by formula

Solve these equations $9y^2 - 12y + 2 = 0$

$$2y^2 + 9y + 10 = 0$$

$$5x^2 = 4x + 7$$

Elaborate

(1) If α and β are roots of quadratic equation $ax^2 + bx + c = 0$,

(i)
$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $\beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$
(ii) $\alpha + \beta = -\frac{b}{a}$ and $\alpha \times \beta = \frac{c}{a}$

- (2) Nature of roots of quadratic equation $ax^2 + bx + c = 0$ depends on the value of $b^2 4ac$. Hence $b^2 4ac$ is called discriminant and is denoted by Greek letter Δ .
- (3) If $\Delta = 0$ The roots of quadratic equation are real and equal.

If $\Delta > 0$ then the roots of quadratic equation are real and unequal.

If $\Delta < 0$ then the roots of quadratic equation are not real.

(4) The quadratic equation, whose roots are α and β is

 $x^2 - (\alpha + \beta) x + \alpha\beta = 0$

Sign trick in quadratic equations .

Now let us learn how to find sign of roots of any quadratic equation

1) When 'c' is +, then both roots have the same sign which is opposite of the sign of 'b'

2) When 'c' is -, then both roots have different signs & there is no need to see the sign of 'b'.

General form of quadratic equation:

Note how the signs change

Explore the Quadratic Equation using the link.

See how changing the value of a, b and c changes the shape of the equations

Thank you