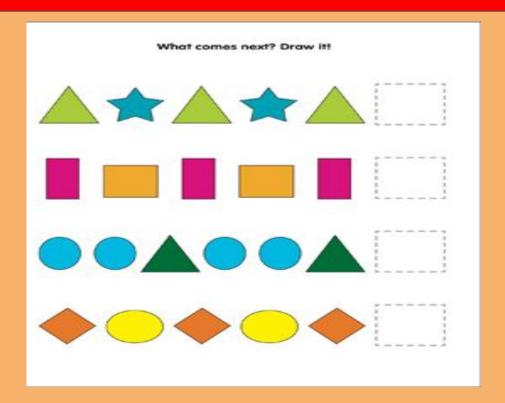


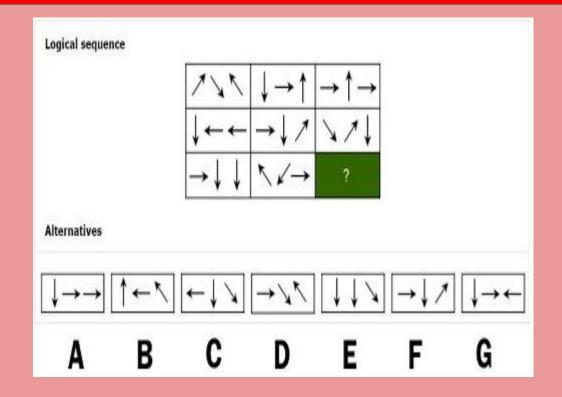
Arithmetic Progression

Grade 10, topic:3 (Maths 1)


Topics

- 1. Sequence
- 2. Terms in a sequence
- 3. Arithmetic Progression
- 4. nth term of an A.P.
- 5. Sum of n terms of an A.P.
- 6. Application in real life

Do you remember these?



Do you remember these?

Can you solve these mentally?

a) 2, 4, 6, 8, 10, ...

g) 0, 2, 6, 12, 20, ...

b) 1, 3, 5, 7, 9, ...

 $1, \frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \dots$

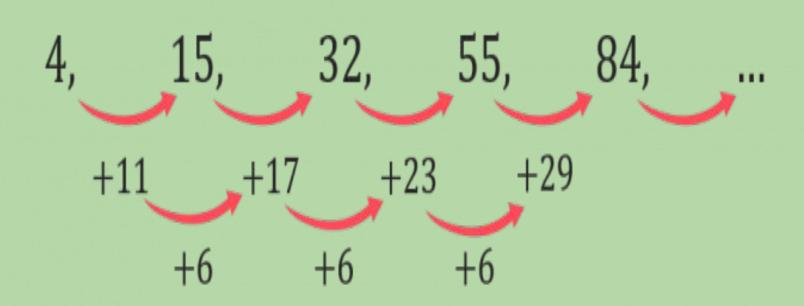
c) 99, 199, 299, 399, 499, ...

i) 6, 12, 20, 30, 42, ...

d) 3, -5, 7, -9, 11, ...

j) $\frac{2}{3}, \frac{3}{2 \times 4}, \frac{4}{3 \times 5}, \frac{5}{4 \times 6}, \frac{6}{5 \times 7}, \dots$

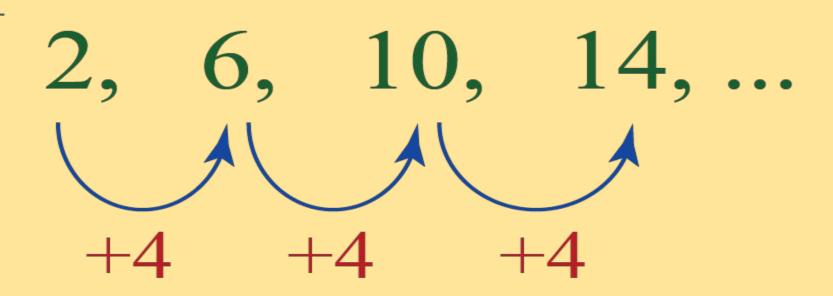
e) $2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}, \dots$


k) $0, \frac{1}{3}, 0, \frac{1}{3}, 0, \dots$

f) 1, 4, 9, 16, 25, ...

1) $-\frac{1}{2}, \frac{2}{5}, -\frac{3}{8}, \frac{4}{11}, -\frac{5}{14}, \dots$

Observe the changes


Now try to understand how the numbers Change | **kotak** | Education Foundation

Increasing Arithmetic Sequence	Decreasing Arithmetic Sequence
* Common difference is positive!	* Common difference is negative!
5 , 9 , 13 , 17 , +4 +4 +4	20 , 17 , 14 , 11 ,

Observe the changes

Common difference

First term, a₁

Common difference, d = 7

Sequence

Sequences

A sequence is a list of numbers that follow a certain rule.

Arithmetic Sequences

In an Arithmetic Sequence the difference between one term and the next is a constant.

$$a, a+d, a+2d, a+3d, ...$$

The nth term, $a_n = a + (n-1)d$

Example: 1, 5, 9, 13, 17, ...

Terms in a sequence

Sequences of Numbers

Definition A sequence $(x_1, x_2, x_3, ...)$ is a rule that assigns to each natural number n_i , the number x_n .

Examples

- $1 \qquad \left(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots\right)$
- (1,1.4,1.41,1.414,1.4142,...)
- 3 (1,-3,5,-7,9,...)

Definition of a sequence

A sequence is made up of terms, separated by commas:

The position of a term in a sequence is denoted by a subscript. Here 106 is the 8th term (x_n)

Terms in a sequence

To calculate terms in a sequence

Find the first four terms of the sequence

$$a_n = 3n - 2$$

$$a_1 = 3(1) - 2 = 1$$
 First term

$$a_2 = 4$$

$$a_3 = 7$$

Second term

$$a_4 = 10$$

Fourth term

More examples

Write the first six terms of the sequence.

a.
$$a_0 = 1$$
, $a_n = a_{n-1} + 4$

b.
$$a_1 = 1, a_n = 3a_{n-1}$$

SOLUTION

$$a. a_0 = 1$$

$$a_1 = a_0 + 4 = 1 + 4 = 5$$

$$a_2 = a_1 + 4 = 5 + 4 = 9$$

$$a_3 = a_2 + 4 = 9 + 4 = 13$$

$$a_4 = a_3 + 4 = 13 + 4 = 17$$

$$a_5 = a_4 + 4 = 17 + 4 = 21$$

b.
$$a_1 = 1$$

$$a_2 = 3a_1 = 3(1) = 3$$

$$a_3 = 3a_2 = 3(3) = 9$$

$$a_4 = 3a_3 = 3(9) = 27$$

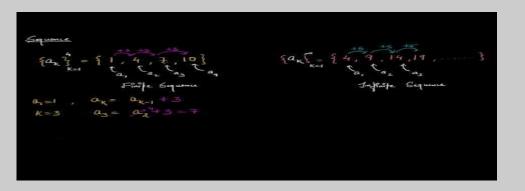
$$a_5 = 3a_4 = 3(27) = 81$$

$$a_6 = 3a_5 = 3(81) = 243$$

Arithmetic sequences

Arithmetic sequences

An arithmetic sequence or arithmetic progression (AP), is a sequence whose terms go up or down by constant steps i.e. there is a common difference.


Examples:

- (i) 5, 7, 9, 11, 13,
- (ii) 88, 78, 68, 58, 48,
- The first term of an AP is denoted by a: u1 = a
- The common difference is denoted by d: un+1 = un+ d
- Formula for the nth term of AP is a + (n 1)d
- nth term: un = a + (n 1)d or a + d(n 1)

Watch the videos

Sequence: A set of numbers where the numbers are arranged in a definite order.

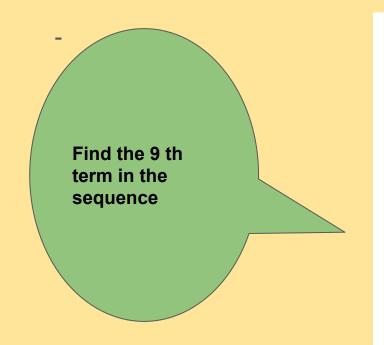
अनुक्रम: संख्याओं का एक समूह जहां संख्याओं को एक निश्चित क्रम में व्यवस्थित किया जाता है।

Watch the video

What is arithmetic progression?

How many terms in a sequence?

$$t_n = a + (n-1)d$$
 $-61 = 107 + (n-1)6$
 $-168 = (n-1)6$
 $28 = (n-1)$
 $n = 29$


To calculate the nth term in the sequence kotak

How to find the Nth term of an AP.एक एपी के Nth term को खोजने के लिए।

To calculate a particular term in an AP

21, 17, 13, 9, 5...

$$a_n = a_1 + (n+1)d$$

$$a_n = 21 + (n+1)(-4)$$

$$a_n = 21 + -4n - 4$$

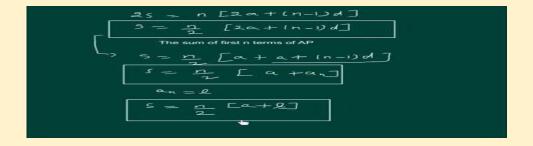
$$a_n = -4n + 17$$

$$a_9 = -4(9) + 17$$

$$a_9 = -19$$

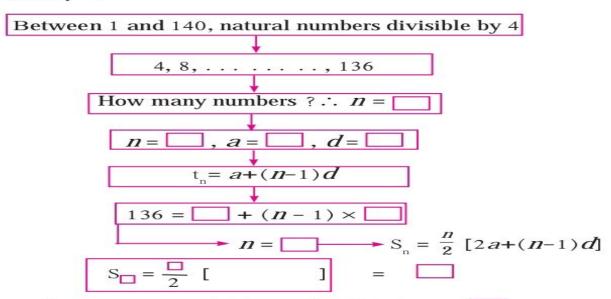
Sum of n terms of AP:


$$S_n = \frac{n}{2} [2a + (n-1)d]$$
 $S_n \longrightarrow \text{Sum of a term of A.P.}$
 $a \longrightarrow \text{First form of A.P.}$
 $d \longrightarrow \text{Common difference}$


Number of terms

Explain and Elaborate

Sum of n terms in the AP series एपी श्रृंखला में n terms का योग



Can we fill up the blanks orally?

6. Complete the following activity to find the sum of natural numbers between 1 and 140 which are divisible by 4.

Sum of numbers from 1 to 140, which are divisible by $4 = \square$

An example

Example #2: Find the sum of the first 60 terms of the following series.

$$9+14+19+24+\ldots+289+294+299+304$$

Step #1: Identify the variables.

$$n = 60$$
, $a_1 = 9$, $a_{60} = 304$

Step #2: Substitute and evaluate.

$$S_n = \frac{n}{2}(a_1 + a_n)$$

$$S_n = \frac{60}{2}(9 + 304) = 30 \times 313 = 9390$$

Formulae that you need to remember cokotak

$$t_n = a + (n-1)d$$
 $S_n = \frac{n}{2}[2a + (n-1)d]$
 $S_n = \frac{n}{2}[a + l]$

