

Geometric Constructions

Topic: 5, Mathematics II

Construction of Similar triangle

- Similar triangle means?
- 2 triangles whose sides have same proportion (means the sides of the triangles are of same ratio)
- 2 triangles whose corresponding angles are equal.
- How do we construct similar triangles?

Explain

Ex. (1) \triangle ABC ~ \triangle PQR,

in $\triangle ABC$,

AB = 5.4 cm,

BC = 4.2 cm,

AC = 6.0 cm.

AB: PQ = 3:2.

Construct \triangle ABC and

 \triangle PQR.

GEOMETRIC CONSTRICTIONS Class - 10th **Maharashtra Board New Syllabus Basic of Practice Set 4.1** Solved examples

Part -1

If the lengths of the sides that we get after calculating is not easily measurable by scale. How do we construct that triangle?

Ans : To divide the line segment into equal parts.

Ex: e, if length of side AB is 11.6/ 3 cm, then by dividing the line segment of length 11.6 cm in three equal parts, we can draw segment AB.

In the example given above, there was no common vertex between the similar triangles

How to construct similar triangles

With a common Vertex

Construct any \triangle ABC. Construct \triangle A'BC' such that AB : A'B = 5:3 and

 \triangle ABC ~ \triangle A'BC'

Will there be a common vertex?

Which one will be the common vertex?

GEOMETRIC CONSTRICTIONS Class - 10th Maharashtra Board New Syllabus

Basic of Practice Set 4.1 Solved examples Part -1

How to construct similar triangles

Construct \triangle A'BC' similar to ABC \triangle ch that AB:A'B = 5:7.

Does it have a common vertex?

Before watching the video, try to draw a rough figure.

GEOMETRIC CONSTRICTIONS Class - 10th Maharashtra Board New Syllabus Basic of Practice Set 4.1

Solved examples Part -1

Practice Set 4.1

If you want to watch

The video, please use this link

https://youtu.be/ EpXEmlOc7sA

BY PAWAN WAGH ACADEMY

Circles

Do you remember

- 1. What is a **diameter**, radius, cord of a circle?
- 2. What is a **tangent**?
- 3. In the figure given below , what are the following

letters- O, P, L?

Let us learn to construct a tangent to a circle

Construction of a tangent to a circle at a point on the circle

Centre of the circle - C

P-Point on the circle

CP? Radius?

How will you construct a tangent?

Will it be perpendicular to the radius?

Property :

A line perpendicular to the radius at its outer end is a tangent to the circle.

Construction of a tangent to a circle at a point on the circle- <u>Using the centre of the circle</u>

Steps of construction

(1) Draw a circle with centre C.
Take any point P on the circle.
(2) Draw ray CP.
(3) Draw line l perpendicular to ray CX through point P. Line I is the required tangent to the circle at point 'P'.

Construction of a tangent to a circle at a point on the circle- <u>Without using the centre of the circle</u>

Watch this video twice so that the concept is very clear.

Theorem used here is

tangent- secant angle theorem

To construct tangents to a circle from a point outside the circle.

P is a point outside the circle.

Practice Set 4.2

For practice set 4.2 , please share the link

https://www.youtube.com/watch? v=-YiCCqwiRh0

Thank you