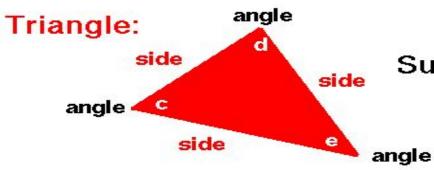
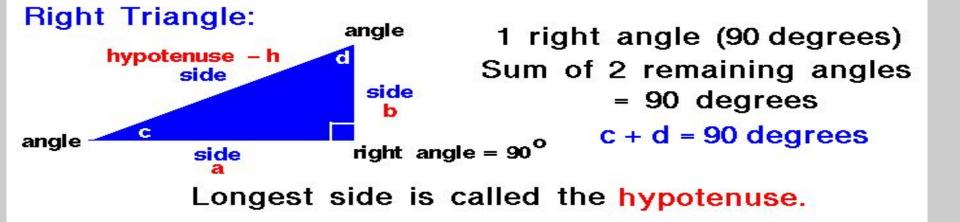


Trigonometry

Grade 10, Topic: 6, Mathematics II



TRIGONOMETRY


- The word 'trigonometry' is derived from the Greek words 'tri'(meaning three), 'gon' (meaning sides) and 'metron' (meaning measure).
- Trigonometry is the study of relationships between the sides and angles of a triangle.
- Early astronomers used it to find out the distances of the stars and planets from the Earth.
- Even today, most of the technologically advanced methods used in Engineering and Physical Sciences are based on trigonometrical concepts.

Here we are

3 sides 3 angles Sum of 3 angles = 180 degrees c + d + e = 180 degrees

$$\sin \theta = \frac{a}{c} = \frac{opposite}{hypotenuse}$$

$$\cos \theta = \frac{b}{c} = \frac{adjacent}{hypotenuse}$$

$$\tan \theta = \frac{a}{b} = \frac{opposite}{adjacent}$$

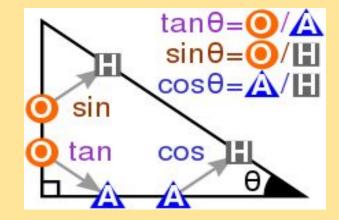
$$\cos \theta = \frac{1}{\sin \theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$


$$\cot \theta = \frac{1}{\tan \theta}$$

θ°	0 °	30°	45°	60°	90°
sin $ heta$	0	<u>1</u> 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos θ	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	<u>1</u> 2	0
tan θ	0	$\frac{\sqrt{3}}{3}$	1	√3	undefined

How to remember



TRIGONOMETRIC FUNC	TIONS		
Function (abbreviation)	Definition		
sine (sin)	$\frac{\text{opposite}}{\text{hypotenuse}} \sin A = \frac{a}{c}$		
cosine (cos)	$\frac{\text{adjacent}}{\text{hypotenuse}} \cos A = \frac{b}{c}$		
tangent (tan)	$\frac{\text{opposite}}{\text{adjacent}} \tan A = \frac{a}{b}$		
cotangent (cot or ctn)	$\frac{\text{adjacent}}{\text{opposite}} \cot A = \frac{b}{a}$		
secant (sec)	$\frac{\text{hypotenuse}}{\text{adjacent}} \sec A = \frac{c}{b}$		
cosecant (csc)	$\frac{\text{hypotenuse}}{\text{opposite}} \csc A = \frac{c}{a}$		

To remember

Angles Ratios	0 °	30 °	45 °	60 °	90°
sin θ	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cos θ	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan θ	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not defined
cosec θ	Not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1
sec θ	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not defined
cot θ	Not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Sine = Opposite ÷ Hypotenuse Cosine = Adjacent ÷ Hypotenuse Tangent = Opposite ÷ Adjacent

SOH-CAH-TOA

TRIGONOMETRIC IDENTITIES

$$\sec \theta = \frac{1}{\cos \theta}$$
$$\csc \theta = \frac{1}{\sin \theta}$$
$$\cot \theta = \frac{1}{\tan \theta}$$

Complementary angles

$$\sin \theta = \cos (90^\circ - \theta)$$

 $\cos \theta = \sin (90^\circ - \theta)$
 $\tan \theta = \cot (90^\circ - \theta)$

$$\rightarrow \sin 40^\circ = \cos 50^\circ$$

$$\rightarrow \cos 15 = \sin 75$$

$$\rightarrow \tan 30^\circ = \cot 60^\circ$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$sin^{2}\theta + cos^{2}\theta = 1$$
$$tan^{2}\theta + 1 = sec^{2}\theta$$
$$1 + cot^{2}\theta = cosec^{2}\theta$$

$$\sin^{2}\theta + \cos^{2}\theta = 1$$

$$\frac{\sin^{2}\theta}{\cos^{2}\theta} + \frac{\cos^{2}\theta}{\cos^{2}\theta} = \frac{1}{\cos^{2}\theta} \quad (\div \cos^{2}\theta)$$

$$\tan^{2}\theta + 1 = \sec^{2}\theta$$

$$\frac{\sin^{2}\theta}{\sin^{2}\theta} + \frac{\cos^{2}\theta}{\sin^{2}\theta} = \frac{1}{\sin^{2}\theta} \quad (\div \sin^{2}\theta)$$

$$1 + \cot^{2}\theta = \csc^{2}\theta$$

This will help you solve

Thank you