

Introduction to microbiology

Grade: 10

Yoghurt production-important steps

Cheese production-important steps

Cheese and its types

Probiotics

https://youtu.be/h4o-mkSwrxl

Bread

Chemically, vinegar is 4% acetic acid (CH ₃ COOH)

Vinegar

Sugar molasses/mapleSacchromycessyrup /fruit juices/starch ofcervisaerootscervisae

Separation by rarefaction

Bleached with ferrocyanide+SO₂ Acetic acid

Very important table: Some beverages and their production

Soya sauce is produced by fermentation of the mixture of flour of wheat or rice and soyabean with the help of the fungus Aspergillus oryzae.

Production of beverages								
Sr.	Fruit	Microbe used	Role of microbe	Name of				
No.				beverage				
1	Caffea arabica	Lactobacillus brevis	Separating seeds from fruit	Coffee				
2	Theobroma	Candida, Hansenula,	Separating seeds from	Cocoa				
	cacao	Pichia,Saccharomyces.	fruit					
3	Grapes	Saccharomyces cerevisiae	Fermentation of juice	Wine				
4.	A pple	Saccharomyces cerevisiae	Fermentation of juice	Cider				

Why microbial enzymes over catalyst?

- These enzymes are **active at low temperature, pH and pressure;**
- As a result energy is saved and erosion-proof instruments are also not necessary.
- Enzymes carry out specific processes; hence
 unnecessary by- products are not formed due to
 which expenses on purification are minimised.
- In case of microbial enzymatic reactions, elimination and decomposition of waste material is avoided and enzymes can be reused. Hence, such enzymes are eco-friendly.

Examples of microbial enzymes are:

- Transferases
- Hydrolases
- Ligases
- Isomerases
- Oxido-reductases
- Lyases

Xanthan gum that imparts thickness to ice creams, puddings, chocolates, milk shakes, chocolate drinks, instant soups, etc.is obtained by fermentation of starch and molasses with the help of Xanthomonas species.

It is variously **useful due to properties like solubility in hot and cold water, high density,** etc.

It is **used for production of pigments, fertilizers, weedicides, textile pigments, tooth pastes, high quality paper**, etc.

Organic acids used in various commercial products and microbes useful for the same

Source	M icrobe	Acid	U se
Sugar and beet molasses, ammonia salt	Brevibacterium, Corynobacterium	L-glutamic acid	Production of monosodium glutamate (Ajinomoto)
Sugar molasses, salt	A spergillus niger	Citric acid	Drinks, toffees, chocolate production
Glucose, corn steep liquor	A spergillus niger	Gluconic acid	Production of minerals used as supplement for calcium and iron
M olasses, corn steep liquor	Lactobacillus delbrueckii	Lactic acid	Source of nitrogen, production of vitamins.
M olasses, corn steep liquor	Aspergillus itaconius	Itaconic acid	Paper, textile, plastic industry, gum production

Substances obtained by microbial processing	Roles
Citirc, Malic and Lactic acid	To impart acidity
Glutamic acid, Lysine, Tryptophan	Protein binding
N ycin and natamycin	M icrobial restrictor
A scorbic acid (Vit. C), B ₁₂ , B ₂	A ntioxidants, vitamins.
B eta carotene, lycopenes, xanthenes, lutein	E dible colours
Polysaccharides, glycolipids	Emulsifiers
V anillin, Ethyl butyrate (fruit flavour), peppermint flavour, essence of various fruits and flowers	Essence
X ylitol, aspartame	A rtificial sweetener (low calorie)

https://youtu.be/UCuOK8DomWs

Very important: Modern landfills and bioremediation

https://youtu.be/3ZeFIVhHwvk (modern landfills)

https://youtu.be/1FGfrl3i2xA (bioremediation)

***Bacteria like **Pseudomonas spp. and Alcanovorax borkumensis** have the ability to destroy the pyridines and other chemicals. Hence, these bacteria are used to clear the oil spills. These are called as **hydrocarbonoclastic bacteria (HCB)**.

HCB decompose the hydrocarbons and bring about the reaction of carbon with oxygen. CO₂ and water is formed in this process.

Vibrio, Ideonella sakaiensis can decompose the PET.

Similarly, species of bacteria like **Actinomycetes**, **Streptomyces**, **Nocardia**, **Actinoplanes** have ability of decomposing rubber from garbage.

Sulphuric acid is source of energy for some species of bacteria like **Acidophillium spp. and Acidobacillus ferrooxidans.** Hence, these bacteria can control the soil pollution occurring due to acid rain.

Solution containing **Azotobacter and artificial nitrogenase** is used in organic farming.

Spinosad, a by-product of fermentation is a biopesticide.